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Abstract
Transmission and reflection of a quantal particle by a single-hump potential
barrier are analysed by means of an amplitude-phase decomposition of the
wavefunction on both sides of the barrier. The amplitude-phase analysis of the
wavefunction provides a particular invariant of the Ermakov–Lewis type, which
originates in the matching process. The transmission and reflection coefficients
turn out to be simple functions of this invariant. Numerical calculations of the
invariant for an Eckart–Epstein potential barrier provide very accurate results.

PACS numbers: 02.30.Hq, 02.60.Lj, 03.65.Ca, 03.65.Nk, 03.65.Sq, 03.65.Xp,
52.20.Hv

1. Introduction

Ermakov systems are defined by two intimately connected classes of second-order ordinary
differential equations [1–3]; see the appendix. Such nonlinear equations possess an invariant
that is a generalization of the well-known Ermakov–Lewis invariant [1, 4–10]. A particular
Ermakov system is defined by the equations in the amplitude-phase method [11–15]; see also
Pinney [16]. The purpose of the present paper is to demonstrate, by using the amplitude-phase
method, that the barrier transmission and reflection coefficients can be expressed in terms of
an invariant of the Ermakov–Lewis type. In contrast to the original Ermakov–Lewis invariant,
that invariant involves two particular solutions of the nonlinear Milne equation [11]. The
calculation of the invariant is found to be accurate and time efficient.

The well-known Ermakov–Lewis invariant [1, 4] plays a formal role in dynamical algebra
methods [17] and canonical transformations [18]. There seem to be few applications in wave
mechanics (see however [19]), where this invariant enters explicitly as an essential part in the
solution of a physical problem.
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Figure 1. (a) Illustration of the Eckart–Epstein potential barrier V (x) in equation (23) for the
two sets of parameters (V0, V1) = (0, 10) and (V0, V1) = (1, 10). For V0 = 0 the barrier is
symmetric. (b) Behaviour of the Milne solution ρL(x), defined by the boundary condition (9a).
The parameters are V0 = 0, V1 = 10 and E = 1. The continuation of ρL(x) to the right of the
barrier is never used numerically.

The amplitude-phase method used in the present work differs from Milne’s original
approach, where the solution of the time-independent Schrödinger equation is analysed in
terms of a single Milne solution (sometimes called the amplitude function). The analysis in
the present work uses two Milne solutions. Both solutions satisfy the nonlinear Milne equation
but with different boundary conditions.

The ideal situation for an amplitude-phase analysis of the Schrödinger equation would
be to use only one non-oscillatory amplitude function, which is the case for the energy
quantization problem for a single potential well and simple types of Siegert states [2, 20],
and for the phase shift problem of a repulsive scattering potential [14, 21]. However, in other
problems, like the calculation of Regge poles [22], resonances [23] and energy quantization
in multi-well potentials [2, 24–26], there is no single Milne solution that is non-oscillatory
in the entire physical region of space. For example, in the present particular case, the barrier
transmission problem, there is one Milne solution that is non-oscillatory to the left of the
barrier but becomes strongly oscillating to the right of the barrier; see figure 1. Consequently,
the corresponding amplitude-phase decomposition is not in practice useful to the right of the
barrier. There is another Milne solution that is non-oscillatory to the right of the barrier, and
which develops oscillations to the left of it. The latter solution is the ideal one for analysing the
Schrödinger solutions to the right of and in the right part of the barrier. Two Milne solutions
are thus needed to cover the whole space with well-behaved amplitude-phase solutions to the
Schrödinger equation.

The present paper considers an invariant defined by the two particular Milne solutions
discussed above. Both solutions are integrated from their asymptotic boundary conditions
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at −∞ and +∞, respectively, to a matching point inside the barrier, where the invariant is
calculated. It is found that a point close to the top of the barrier is preferable, since the
Milne solutions have similar magnitudes there. In contrast to phase integral and semiclassical
approximations, the method does not use the complex plane with its transition points and
Stokes and anti-Stokes lines.

The paper is organized as follows: section 2 introduces the Schrödinger equation for
the barrier transmission problem and the associated Milne equation. Section 3 explains the
matching of two pairs of particular Schrödinger solutions defined by the ‘left’ Milne solution
and by the ‘right’ Milne solution, respectively. This matching is used in section 4 to obtain
explicit expressions for the transmission and reflection coefficients. Comparison of numerical
and exact analytic results for the Eckart–Epstein potential barrier is presented in section 5, and
a discussion is found in section 6. Invariants of the Ermakov–Lewis type are briefly presented
in the appendix.

2. Basic equations

This section summarizes the basic equations needed in the derivation of amplitude-phase
formulae for transmission and reflection coefficients.

2.1. Schrödinger equation

The time-independent Schrödinger equation for a quantal particle of mass m and energy E is
given by the second-order ordinary differential equation

d2�

dx2
+ R(x)� = 0, (1)

with

R(x) = 2m

h̄2 [E − V (x)]. (2)

The potential V (x) is assumed to approach constant values as x → ±∞, i.e.

V (−∞) = VL, (3a)

V (+∞) = VR. (3b)

The boundary conditions for the wavefunction � can be written as

� ∼ t
1√
κL

exp(−iκLx), x → −∞, (4a)

� ∼ 1√
κR

exp(−iκRx) + r
1√
κR

exp(iκRx), x → +∞, (4b)

where t and r are the transmission and reflection amplitudes, respectively, and

κL =
√

2m

h̄2 (E − VL), (5a)

κR =
√

2m

h̄2 (E − VR). (5b)
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The aim is to obtain exact expressions for the transmission and reflection coefficients:

T = |t |2, (6a)

R = |r|2. (6b)

2.2. Milne equation

The amplitude-phase ansatz consists of

�(±)(x) = ρ(x) exp(±iφ(x)), (7a)

dφ(x)

dx
= 1

ρ2(x)
, (7b)

where the relation (7b) is obtained from the requirement that the Wronskian determinant of the
two solutions (7a) is constant. Inserting (7a) into the Schrödinger equation (1), one obtains
the nonlinear Milne equation

d2ρ

dx2
+ R(x)ρ = ρ−3. (8)

Two particular solutions, ρL(x) and ρR(x), of (8) are of interest in the present investigation.
They are defined by being asymptotically constant at −∞ and +∞. They are thus specified
by the boundary conditions

ρL(−∞) = κ
−1/2
L , (9a)

ρR(+∞) = κ
−1/2
R . (9b)

Each one of these Milne solutions defines a pair of independent solutions for the Schrödinger
equation:

�
(±)
L (x0, x) = ρL(x) exp(±iφL(x0, x)), φL(x0, x) =

∫ x

x0

dx ′

ρ2
L(x ′)

, (10a)

�
(±)
R (x0, x) = ρR(x) exp(±iφR(x0, x)), φR(x0, x) =

∫ x

x0

dx ′

ρ2
R(x ′)

, (10b)

where x0 is an arbitrary reference point. The same point x0 will be used later on as matching
point to find the relation between �

(±)
L (x0, x) and �

(±)
R (x0, x).

Note that the phases φL(x0, x) and φR(x0, x) in (10a) and (10b), respectively, which may
have to be computed in a general problem but not here, require that the Milne functions have
been determined from the boundary conditions (9a) and (9b).

3. Matching of the solutions of the Schrödinger equation

The present section describes how the two pairs of particular Schrödinger solutions are matched
at the point x0.

In matrix notation, the solutions
(
�

(+)
L (x0, x),�

(−)
L (x0, x)

)
and their derivatives can be

expressed in terms of �
(+)
R (x0, x) and �

(−)
R (x0, x) and their derivatives according to(

�
(+)
L (x0, x) �

(−)
L (x0, x)

�
′(+)
L (x0, x) �

′(−)
L (x0, x)

)
=

(
�

(+)
R (x0, x) �

(−)
R (x0, x)

�
′(+)
R (x0, x) �

′(−)
R (x0, x)

) (
C11 C12

C21 C22

)
, (11)
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where Cij are the elements of a constant matrix C. This matrix is determined from (11) along
with (10b) and (10a) at the matching point x0. One obtains

C =
(

1
2 (−iP + Q + Q−1) 1

2 (−iP + Q − Q−1)

1
2 (iP + Q − Q−1) 1

2 (iP + Q + Q−1)

)
, (12)

where

Q = ρL(x0)

ρR(x0)
, (13a)

P = ρ ′
L(x0)ρR(x0) − ρ ′

R(x0)ρL(x0). (13b)

For real potentials Q and P are real.

4. Transmission and reflection coefficients

In the present section, the wavefunction � satisfying the boundary conditions (4a) and (4b)
is constructed from the particular amplitude-phase solutions discussed in section 2.2. To the
left of the barrier the solution �

(−)
L (x0, x) can be written as

�
(−)
L (x0, x) ∼ ρL(x) e−iκLx eiδL , as x → −∞, (14)

where

ρL(−∞) = 1√
κL

, (15a)

δL = − lim
x→−∞(φL(x0, x) − κLx). (15b)

The solution �
(−)
L (x0, x) is obviously proportional to the physical solution � to the left of the

barrier, and �
(+)
L (x0, x) is thus not needed in this particular problem. With the use of (11), one

obtains

�
(−)
L (x0, x) = C12�

(+)
R (x0, x) + C22�

(−)
R (x0, x), (16)

where according to (4b) and (10b)

�
(±)
R (x0, x) ∼ ρR(x) e±i(κRx+δR), as x → +∞, (17)

with

ρR(+∞) = 1√
κR

, (18a)

δR = lim
x→+∞(φR(x0, x) − κRx). (18b)

The particular solution �
(−)
L (x0, x) satisfies the boundary condition (14) and, according to

(16), (17) and (18a), the condition

�
(−)
L (x0, x) ∼ C12√

κR

ei(κRx+δR) +
C22√
κR

e−i(κRx+δR), x → +∞. (19)

Normalizing (19) according to (4b), one finds for the transmission and reflection amplitudes
(4a) and (4b) the formulae

t = ei(δR+δL) 1

C22
, (20a)
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r = e2iδR
C12

C22
. (20b)

Since the phases δL and δR in (20a) and (20b) are real, one finds by means of (12) that the
transmission and reflection coefficients defined in (6a) and (6b) become

T = 1

C22C
∗
22

= 4

P2 + (Q + Q−1)2
= 2

M + 1
, (21a)

R = C12C
∗
12

C22C
∗
22

= P2 + (Q − Q−1)2

P2 + (Q + Q−1)2
= M − 1

M + 1
, (21b)

where

M = 1
2 (P2 + Q2 + Q−2). (22)

The above analysis shows that two particular Milne solutions ρL and ρR specified by the
boundary conditions (9a) and (9b), respectively, determine an Ermakov–Milne invariant M
(see the appendix), which in turn determines the transmission and reflection coefficients T and
R in (21a) and (21b). Note that the derivations rely only on the amplitude-phase method and
that the invariant M enters in the interpretation of the results.

5. Numerical application

The exact formulae (21a) and (21b) for the transmission and reflection coefficients,
respectively, are expressed in terms of M, which require numerical computations of
ρL(x0), ρ

′
L(x0), ρR(x0) and ρ ′

R(x0). To find the accuracy of a standard numerical Runge–
Kutta routine (MatLab-rk45), an Eckart–Epstein potential is used for which the Schrödinger
equation has exact analytic solutions.

The Eckart–Epstein potential barrier [27–29] with parameters V0 and V1 is given by

V (x) = V0
ex

1 + ex
+ V1

ex

(1 + ex)2
, (23)

which describes an asymmetric barrier with

V (−∞) = 0, (24a)

V (+∞) = V0. (24b)

An exact expression for the reflection coefficient R = 1 − T is derived by Eckart [27];
see also Karlsson [29]. These formulae are used for obtaining the ‘exact’ reference results
denoted by Texact in table 1.

5.1. Direct integration of the Milne equation

The numerical calculations of the Milne solutions needed for T and R in (21a) and (21b),
respectively, are performed with x0 chosen near the centre position of the barrier. In this way
both ρL and ρR become nonoscillating functions of x as they are integrated numerically from
−∞ and +∞, respectively.

Table 1 shows the calculated transmission coefficient T for the Eckart–Epstein barrier with
V0 = 1.922 and V1 = 11.2 and a sequence of energies E covering a table in [29]. The units
in Milne equation are such that m/h̄2 = 1. From table 1, it is seen that the direct integration
of the Milne equation provides results with relative errors that are consistent with the chosen
tolerance in the numerical routine.
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Table 1. Calculated values of the transmission coefficient T for the non-symmetric Eckart barrier
with V0 = 1.922 and V1 = 11.2, which corresponds to an asymmetric barrier with Vmax = 3.843.
The numerical integrations (with a tolerance of 3 × 10−14) were initiated at x = ±35 and the
matching was made at an approximate value of the barrier maximum. The relative error of the
transmission coefficient has been calculated by means of an exact analytic expression for
the transmission coefficient Texact [27]. Throughout this table there are about 13 significant
digits in the results.

E T |(T − Texact)/Texact|
2 4.894 253 223 723 29 × 10−7 4 × 10−13

2.5 1.559 372 292 527 55 × 10−4 3 × 10−13

3 0.007 001 207 939 73 3 × 10−13

3.5 0.143 669 573 206 66 4 × 10−13

4 0.732 932 800 620 18 7 × 10−14

4.5 0.971 958 485 460 71 8 × 10−14

5 0.997 233 823 458 27 2 × 10−15

5.5 0.999 689 147 168 65 2 × 10−15

6 0.999 960 473 939 06 5 × 10−15

10 0.999 999 999 953 11 1 × 10−16

5.2. Improved numerical integration

Sidky and Ben-Itzhak [23] suggest an improvement compared with the direct integration
of Milne’s equation in cases where classically forbidden regions become important, as
in tunnelling and resonance situations. The Milne solution ρ behaves exponentially in a
classically forbidden region and thus an ansatz

ρ = exp(γ ) (25)

is inserted into the Milne equation (8), which becomes

d2γ

dx2
+

(
dγ

dx

)2

+ R(x) = exp(−4γ ). (26)

This equation replaces Milne’s equation, both in the classically allowed and the classically
forbidden regions. The phase relation (7b), i.e. dφ/dx = ρ−2, is due to the substitution (25)
replaced by

dφ

dx
= exp(−2γ ). (27)

Equation (26) can be used instead of Milne’s equation to calculate M. The invariant
M is determined by ρL(x0) = exp(γL(x0)) and ρR(x0) = exp(γR(x0)) and their derivatives
evaluated at the matching point x0. To obtain these Milne solution values from (26) one
calculates solutions γL and γL satisfying the boundary conditions

γL(x) → ln
(
κ

−1/2
L

)
, as x → −∞, (28a)

γR(x) → ln
(
κ

−1/2
R

)
, as x → +∞. (28b)

In the present work, this improved numerical method has been tested against the direct
integration of the Milne equation. For thick barriers and energies far below the barrier top,
the improved calculations often give one further significant digit, but not consistently, given
a tolerance of 3 × 10−14. The main improvement is the reduction in computer time by a
factor of approximately 1/3. To see this difference one needs to have situations like for
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example the symmetric Eckart–Epstein potential with V0 = 0 and V1 = 1000. Note that
the transmission coefficient for V0 = 0, V1 = 1000 and E = 0.1 is accurately calculated as
T ≈ 2.579 957 065 837 × 10−120 with the improved method.

6. Discussion

This investigation shows that the transmission and reflection coefficients for real one-
dimensional barriers are simply expressed in terms of an invariant of the Ermakov–Lewis
type. The fact that the amplitude-phase method deals with two equations that define an
Ermakov system is theoretically interesting, but so far it is mainly unexplored; see however
a recent article [19]. It may open up new ideas to improve the amplitude-phase analysis
of the time-independent Schrödinger solutions. In recent work Matzkin [30] discusses such
an improvement of the amplitude-phase method for bound states in the context of Ermakov
systems and the original Ermakov–Lewis invariant.

Ermakov systems have, besides the original Ermakov–Lewis invariant and the present
Ermakov–Milne invariant, several other invariants that are recently discussed in the context
of the amplitude-phase method (see [19]). In this work the Ermakov–Milne invariant is, apart
from its theoretical interest, easily calculated from two particular, non-oscillating solutions
of the Milne equation, and the transmission and reflection coefficients obtained are very
accurate for single-hump potentials. In extreme cases of thick barriers the computations can
be improved as described in section 5.

Acknowledgments
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Appendix. Ermakov system

A particular Ermakov system may be defined as two coupled, nonlinear differential equations
of the form (see [7, 30] and references therein)

y ′′ + R(x)y = y−3f (z/y), (A.1)

z′′ + R(x)z = z−3g(z/y), (A.2)

where f and g are functions of their arguments. The invariant for this Ermakov system is
given by

I = 1

2
(z′y − zy ′)2 +

∫ z/y

(uf (u) − u−3g(u)) du. (A.3)

For the case f = g = 0 the invariant I reduces to a squared Wronskian of two Schrödinger
solutions. The original Emakov–Lewis invariant corresponds to putting f = 0 and g = 1 in
(A.1) and (A.2), respectively [1, 2, 4], yielding

L = 1

2

(
(z′y − zy ′)2 +

(
y

z

)2
)

, (A.4)

where y and z are any two solutions of (1) and (8), respectively. Another invariant results from
the choice f = g = 1, for which (A.1) and (A.2) become two Milne equations [5–7, 10]:

M = 1

2

(
(z′y − zy ′)2 +

(
y

z

)2

+

(
z

y

)2
)

. (A.5)
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This invariant will be referred to as the Ermakov–Milne invariant. In the present paper, the
Ermakov–Milne invariant M refers to the two particular Milne solutions z = ρL(x) and
y = ρR(x) specified by (9a) and (9b), respectively.
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